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1. (30 points) Coupling of modes in space

(a) (10 points) Owing to the lossless interaction, the energy conservation of the two
coupled modes a1 and a2 is hold such that

dP

dz
= 0, (1)

where P is the total power given by

P = p1|a1|2 + p2|a2|2 (2)

in which p1,2 = ±1 depending on the interaction direction is either copropagating
(= +1) or counterpropagating (= −1) . Substitution of the coupled-mode equations
into Eqs.(1) and (2) yields to

p1κ12 + p2κ
∗
21 = 0. (3)

Therefore, one finds κ12 = −κ∗
21 and κ12 = κ∗

21 for codirectional and counterdirec-
tional coupling, respectively.

(b) (10 points) As shown in the class, the two propagation constants due to coupling
are given by

β± =
β1 + β2

2
±

√(
β1 − β2

2

)2

− κ12κ21

Using β1 = aω and β2 = bω with κ12κ21 = −|κ12|2 for two coupled copropagating
modes , one finds β± = ±|κ12| at ω = 0. Therefore, the full gap width of the two
propagation constants at ω = 0 is given by

|β+ − β−| = 2|κ12|.

(c) (10 points) Using β1 = −ω and β2 = ω with κ12κ21 = |κ12|2 for two coupled
counterpropagating modes , one finds β± = ±

√
ω2 − |κ12|2.

For pure real values of β for β±, i.e.. |ω| ≥ |κ12|, one finds ω2−β2 = |κ12|2, showing
hyperbolic curves with foci points of (ω, β) = (±

√
2|κ12|, 0).

For pure imaginary values of β for β±, i.e.. |ω| ≤ |κ12|, one finds β± = o
√
|κ12|2 − ω2,

indicating [Im(β)]2+ω2 = |κ12|2. It shows a circle with the radius of |κ12|.

2. (20 points) Scattering matrix
Using the property that the determinant of the product of two matrices [A] and [B]
equals the product of their determinants, one finds from Eq. (20) that

det[S]†[S] = det[S]†det[S] = 1.
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On the other hand,
det[S]† = S∗

11S
∗
22 − S∗

12S
∗
21 = (det[S])∗.

Therefore, one finds that

det[S]†[S] = det[S]†det[S] = |det[S]|2 = 1,

implying that
|det[S]| = 1.

You can also use Eq. (21) and |det[S]|2 = |S11S22 − S12S21|2 to prove that |det[S]| = 1.

3. (20 points) Transfer matrix
Using the scattering matrix [S], one can express Ψ−

L and Ψ+
R in terms of Ψ+

L and Ψ−
R

such that (
Ψ−

L

Ψ+
R

)
=

(
S11 S12

S21 S22

)(
Ψ+

L

Ψ−
R

)
=

(
r′ t
t′ r

)(
Ψ+

L

Ψ−
R

)
,

from which one can find that

Ψ−
L = r′Ψ+

L + tΨ−
R and Ψ+

R = t′Ψ+
L + rΨ−

R.

Rewriting the above equations for Ψ+
R and Ψ−

R in terms of Ψ+
L and Ψ−

L , one finds that(
Ψ+

R

Ψ−
R

)
=

(
t′ − rr′t−1 rt−1

−r′t−1 t−1

)(
Ψ+

L

Ψ−
L

)
,

showing that

[M ] =

(
t′ − rr′t−1 rt−1

−r′t−1 t−1

)
.


