Solution Set No.4

1. (30 points) Coupling of modes in space

(a) (10 points) Owing to the lossless interaction, the energy conservation of the two coupled modes a_1 and a_2 is hold such that

$$\frac{dP}{dz} = 0,\tag{1}$$

where P is the total power given by

$$P = p_1 |a_1|^2 + p_2 |a_2|^2 \tag{2}$$

in which $p_{1,2} = \pm 1$ depending on the interaction direction is either copropagating (= +1) or counterpropagating (= -1). Substitution of the coupled-mode equations into Eqs.(1) and (2) yields to

$$p_1\kappa_{12} + p_2\kappa_{21}^* = 0. (3)$$

Therefore, one finds $\kappa_{12} = -\kappa_{21}^*$ and $\kappa_{12} = \kappa_{21}^*$ for codirectional and counterdirectional coupling, respectively.

(b) (10 points) As shown in the class, the two propagation constants due to coupling are given by

$$\beta_{\pm} = \frac{\beta_1 + \beta_2}{2} \pm \sqrt{\left(\frac{\beta_1 - \beta_2}{2}\right)^2 - \kappa_{12}\kappa_{21}}$$

Using $\beta_1 = a\omega$ and $\beta_2 = b\omega$ with $\kappa_{12}\kappa_{21} = -|\kappa_{12}|^2$ for two coupled copropagating modes, one finds $\beta_{\pm} = \pm |\kappa_{12}|$ at $\omega = 0$. Therefore, the full gap width of the two propagation constants at $\omega = 0$ is given by

$$|\beta_+ - \beta_-| = 2|\kappa_{12}|$$

(c) (10 points) Using $\beta_1 = -\omega$ and $\beta_2 = \omega$ with $\kappa_{12}\kappa_{21} = |\kappa_{12}|^2$ for two coupled counterpropagating modes, one finds $\beta_{\pm} = \pm \sqrt{\omega^2 - |\kappa_{12}|^2}$.

For pure real values of β for β_{\pm} , *i.e.*, $|\omega| \ge |\kappa_{12}|$, one finds $\omega^2 - \beta^2 = |\kappa_{12}|^2$, showing hyperbolic curves with foci points of $(\omega, \beta) = (\pm \sqrt{2}|\kappa_{12}|, 0)$.

For pure imaginary values of β for β_{\pm} , *i.e.*, $|\omega| \leq |\kappa_{12}|$, one finds $\beta_{\pm} = o\sqrt{|\kappa_{12}|^2 - \omega^2}$, indicating $[\text{Im}(\beta)]^2 + \omega^2 = |\kappa_{12}|^2$. It shows a circle with the radius of $|\kappa_{12}|$.

2. (20 points) Scattering matrix

Using the property that the determinant of the product of two matrices [A] and [B] equals the product of their determinants, one finds from Eq. (20) that

$$det[S]^{\dagger}[S] = det[S]^{\dagger}det[S] = 1.$$

Solid-State and Soft Matter Photonics Spring, 2020 Professor Y.Tomita

Solution Set No.4

On the other hand,

$$det[S]^{\dagger} = S_{11}^* S_{22}^* - S_{12}^* S_{21}^* = (det[S])^*.$$

Therefore, one finds that

$$det[S]^{\dagger}[S] = det[S]^{\dagger}det[S] = |det[S]|^2 = 1$$

implying that

 $\left|\det[S]\right| = 1.$

You can also use Eq. (21) and $|\det[S]|^2 = |S_{11}S_{22} - S_{12}S_{21}|^2$ to prove that $|\det[S]| = 1$.

3. (20 points) Transfer matrix

Using the scattering matrix [S], one can express Ψ_L^- and Ψ_R^+ in terms of Ψ_L^+ and $\Psi_R^$ such that

$$\begin{pmatrix} \Psi_L^- \\ \Psi_R^+ \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} \Psi_L^+ \\ \Psi_R^- \end{pmatrix} = \begin{pmatrix} r' & t \\ t' & r \end{pmatrix} \begin{pmatrix} \Psi_L^+ \\ \Psi_R^- \end{pmatrix},$$

from which one can find that

$$\Psi_L^- = r' \Psi_L^+ + t \Psi_R^-$$
 and $\Psi_R^+ = t' \Psi_L^+ + r \Psi_R^-$

Rewriting the above equations for Ψ_R^+ and Ψ_R^- in terms of Ψ_L^+ and Ψ_L^- , one finds that

$$\begin{pmatrix} \Psi_R^+ \\ \Psi_R^- \end{pmatrix} = \begin{pmatrix} t' - rr't^{-1} & rt^{-1} \\ -r't^{-1} & t^{-1} \end{pmatrix} \begin{pmatrix} \Psi_L^+ \\ \Psi_L^- \end{pmatrix},$$

showing that

$$[M] = \begin{pmatrix} t' - rr't^{-1} & rt^{-1} \\ -r't^{-1} & t^{-1} \end{pmatrix}.$$