参照論文


  1. J. Guo, R. Fujii, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, "Effects of chain-transferring thiol functionalities on the performance of nanoparticle-polymer composite volume gratings," Optics Letters 39, 6743-6746 (2014).
  2. R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, “Nanoparticle-polymer-composite volume gratings incorporating chain-transfer agents for holography and slow-neutron optics,” Opt. Lett. 39, 3453-3456 (2014).
  3. S. Takayama, K. Nagaya, K. Momose, and Y. Tomita, “Effects of symbol modulation coding on readout fidelity of shift-multiplexed holographic digital data storage in a photopolymerizable nanoparticle-(thiol-ene)polymer composite film,” Applied Optics 53, B53-B59 (2014).
  4. K. Mitsube, Y. Nishimura, K. Nagaya, S. Takayama, and Y. Tomita, “Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: Characterization and shift-multiplexed holographic digital data page storage,” Optical Materials Express 4, 982-996 (2014).
  5. K. Momose, S. Takamaya, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Optics Letters 37, 2250-2252 (2012).
  6. Yasuo Tomita, "Holographic nanoparticle-photopolymer composites," Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa ed.,Volume 15, pp.191-205 (American Scientific Publishers, Valencia, 2011).
  7. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based on step-growth polymerization,” Optical Materials Express 1, 1113-1120 (2011). The
  8. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Optical Materials Express 1, 207-222 (2011).
  9. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Optics Letters 35, 396-398 (2010). [Cited in the Virtual Journal of Nanoscale Science & Technology 21, issue 9 (2010).]
  10. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” Journal of Applied Physics 107, 023107-1 – 6 (2010). [Cited in the Virtual Journal of Nanoscale Science & Technology 21, issue 6 (2010).]
  11. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and M. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” Journal of Optics A: Pure and Applied Optics 11, 024010-1 -024010-7 (2009). Invited paper
  12. Y Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Optics Letters 33, 1750-1752 (2008). [Cited in the Virtual Journal of Nanoscale Science & Technology 18, issue 11 (2008).]
  13. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Optics Express 14, 12712-12719 (2006).
  14. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, "Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage," Applied Physics Letters 88. 071103-1 – 3 (2006). [Cited in the Virtual Journal of Nanoscale Science & Technology 13, issue 8 (2006).]
  15. N. Suzuki and Y. Tomita, “Silica nanoparticles-dispersed methacrylate photopolymer with net diffraction efficiency near 100%,” Applied Optics 43, 2125-2129 (2004).
  16. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Applied Physics Letters 83, 410-412 (2003).
  17. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Applied Physics Letters 81, 4121-4123 (2002). [Cited in the Virtual Journal of Nanoscale Science & Technology 6, issue 23 (2002), and reviewed in Nature 422, 557 (2003). ]